enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Event dispatching thread - Wikipedia

    en.wikipedia.org/wiki/Event_dispatching_thread

    The event dispatching thread (EDT) is a background thread used in Java to process events from the Abstract Window Toolkit (AWT) graphical user interface event queue. It is an example of the generic concept of event-driven programming , that is popular in many other contexts than Java, for example, web browsers , or web servers .

  3. Yield (multithreading) - Wikipedia

    en.wikipedia.org/wiki/Yield_(multithreading)

    pthread_yield() in the language C, a low level implementation, provided by POSIX Threads [1] std::this_thread::yield() in the language C++, introduced in C++11. The Yield method is provided in various object-oriented programming languages with multithreading support, such as C# and Java. [2]

  4. Exception handling (programming) - Wikipedia

    en.wikipedia.org/wiki/Exception_handling...

    Another feature is a semi-asynchronous mechanism that raises an asynchronous exception only during certain operations of the program. For example, Java's Thread. interrupt only affects the thread when the thread calls an operation that throws InterruptedException. [53]

  5. Java concurrency - Wikipedia

    en.wikipedia.org/wiki/Java_concurrency

    Each thread can be scheduled [5] on a different CPU core [6] or use time-slicing on a single hardware processor, or time-slicing on many hardware processors. There is no general solution to how Java threads are mapped to native OS threads. Every JVM implementation can do this differently. Each thread is associated with an instance of the class ...

  6. Thread (computing) - Wikipedia

    en.wikipedia.org/wiki/Thread_(computing)

    A process with two threads of execution, running on one processor Program vs. Process vs. Thread Scheduling, Preemption, Context Switching. In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. [1]

  7. Spinlock - Wikipedia

    en.wikipedia.org/wiki/Spinlock

    The result is an indefinite postponement until the thread holding the lock can finish and release it. This is especially true on a single-processor system, where each waiting thread of the same priority is likely to waste its quantum (allocated time where a thread can run) spinning until the thread that holds the lock is finally finished.

  8. Context switch - Wikipedia

    en.wikipedia.org/wiki/Context_switch

    Furthermore, analogous context switching happens between user threads, notably green threads, and is often very lightweight, saving and restoring minimal context. In extreme cases, such as switching between goroutines in Go, a context switch is equivalent to a coroutine yield, which is only marginally more expensive than a subroutine call.

  9. Spurious wakeup - Wikipedia

    en.wikipedia.org/wiki/Spurious_wakeup

    In this way, there is a race condition between all the awakened threads. The first thread to run will win the race and find the condition satisfied, while the other threads will lose the race, and experience a spurious wakeup. [citation needed] The problem of spurious wakeup can be exacerbated on multiprocessor systems.