enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that + = (,).

  3. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    This means: solve for d the equation de ≡ 1 (mod λ(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and λ(n) being coprime, said equation is a form of Bézout's identity, where d is one of the coefficients. d is kept secret as the private key exponent.

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The extended Euclidean algorithm was published by the English mathematician Nicholas Saunderson, [41] who attributed it to Roger Cotes as a method for computing continued fractions efficiently. [42] In the 19th century, the Euclidean algorithm led to the development of new number systems, such as Gaussian integers and Eisenstein integers.

  7. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Euclidean algorithm; Coprime; Euclid's lemma; Bézout's identity, Bézout's lemma; Extended Euclidean algorithm; Table of divisors; Prime number, prime power. Bonse's inequality; Prime factor. Table of prime factors; Formula for primes; Factorization. RSA number; Fundamental theorem of arithmetic; Square-free. Square-free integer; Square-free ...

  8. RSA problem - Wikipedia

    en.wikipedia.org/wiki/RSA_problem

    More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.

  9. RSA (cryptosystem) - en.wikipedia.org

    en.wikipedia.org/.../mobile-html/RSA_(algorithm)

    RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.