Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
A polynomial-time problem can be very difficult to solve in practice if the polynomial's degree or constants are large enough. In addition, information-theoretic security provides cryptographic methods that cannot be broken even with unlimited computing power. "A large-scale quantum computer would be able to efficiently solve NP-complete problems."
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The MAX-SAT problem is OptP-complete, [1] and thus NP-hard (as a decision problem), since its solution easily leads to the solution of the boolean satisfiability problem, which is NP-complete. It is also difficult to find an approximate solution of the problem, that satisfies a number of clauses within a guaranteed approximation ratio of the ...
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
Open problems around exact algorithms by Gerhard J. Woeginger, Discrete Applied Mathematics 156 (2008) 397–405. The RTA list of open problems – open problems in rewriting. The TLCA List of Open Problems – open problems in area typed lambda calculus
Then we are told that the 1st part is not sped up, so s1 = 1, while the 2nd part is sped up 5 times, so s2 = 5, the 3rd part is sped up 20 times, so s3 = 20, and the 4th part is sped up 1.6 times, so s4 = 1.6. By using Amdahl's law, the overall speedup is