enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  3. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    This problem is equivalent to the first. It gets rid of the inequality, but introduces the issue that the penalty function c, and therefore the objective function f(x) + c(x), is discontinuous, preventing the use of calculus to solve it. A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from ...

  4. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    In this way, all lower bound constraints may be changed to non-negativity restrictions. Second, for each remaining inequality constraint, a new variable, called a slack variable, is introduced to change the constraint to an equality constraint. This variable represents the difference between the two sides of the inequality and is assumed to be ...

  5. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the objective function and all of the hard constraints are linear and some hard constraints are inequalities, then the problem is a linear programming problem. This can be solved by the simplex method , which usually works in polynomial time in the problem size but is not guaranteed to, or by interior point methods which are guaranteed to ...

  6. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a global maximum or minimum over the ...

  8. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]

  9. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    with v the Lagrange multipliers on the non-negativity constraints, λ the multipliers on the inequality constraints, and s the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables ( x , s ) with its set of KKT vectors (optimal Lagrange multipliers) being ( v , λ ) .