Search results
Results from the WOW.Com Content Network
Illustration of the vector formulation. The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line.
The vector equation for a line is = + where is a unit vector in the direction of the line, is a point on the line, and is a scalar in the real number domain. Substituting the equation for the line into the equation for the plane gives
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
If is a unit vector on the line, then the projection is given by the outer product =. (If is complex-valued, the transpose in the above equation is replaced by a Hermitian transpose). This operator leaves u invariant, and it annihilates all vectors orthogonal to u {\displaystyle \mathbf {u} } , proving that it is indeed the orthogonal ...
In order to find the intersection point of a set of lines, we calculate the point with minimum distance to them. Each line is defined by an origin a i and a unit direction vector n̂ i. The square of the distance from a point p to one of the lines is given from Pythagoras:
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.
so the curl of a 1-vector field (fiberwise 4-dimensional) is a 2-vector field, which at each point belongs to 6-dimensional vector space, and so one has = < =,,,,, which yields a sum of six independent terms, and cannot be identified with a 1-vector field. Nor can one meaningfully go from a 1-vector field to a 2-vector field to a 3-vector field ...