Search results
Results from the WOW.Com Content Network
Flame atomic absorption spectroscopy instrument A scientist preparing solutions for atomic absorption spectroscopy, reflected in the glass window of the AAS's flame atomizer cover door. Atomic absorption spectroscopy (AAS) is a spectro-analytical procedure for the quantitative measurement of chemical elements. AAS is based on the absorption of ...
GFAA spectrometry instruments have the following basic features: 1. a source of light (lamp) that emits resonance line radiation; 2. an atomization chamber (graphite tube) in which the sample is vaporized; 3. a monochromator for selecting only one of the characteristic wavelengths (visible or ultraviolet) of the element of interest; 4. a detector, generally a photomultiplier tube (light ...
Alternatively, salt (sodium chloride) on a ceramic stick can be placed in the flame of Bunsen burner as the sodium vapor source. When the magnetic field is energized, the lamp image will be brighter. [16] However, the magnetic field also affects the flame, making the observation depend upon more than just the Zeeman effect. [15]
For example, when platinum wire is dipped into a sodium nitrate solution and then inserted into a flame, the sodium atoms emit an amber yellow color. Similarly, when indium is inserted into a flame, the flame becomes blue. These definite characteristics allow elements to be identified by their atomic emission spectrum.
For atoms in the gas phase the principal effects are Doppler and pressure broadening. Lines are relatively sharp on the scale of measurement so that applications such as atomic absorption spectroscopy (AAS) and Inductively coupled plasma atomic emission spectroscopy (ICP) are used for elemental analysis. Atoms also have distinct x-ray spectra ...
Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.
Atomic absorption spectroscopy and atomic emission spectroscopy involve visible and ultraviolet light. These absorptions and emissions, often referred to as atomic spectral lines, are due to electronic transitions of outer shell electrons as they rise and fall from one electron orbit to another.
In atomic absorption spectroscopy, light of a predetermined wavelength is passed through a collection of atoms. If the wavelength of the source light has energy corresponding to the energy difference between two energy levels in the atoms, a portion of the light will be absorbed.