Search results
Results from the WOW.Com Content Network
Flame atomic absorption spectroscopy instrument A scientist preparing solutions for atomic absorption spectroscopy, reflected in the glass window of the AAS's flame atomizer cover door. Atomic absorption spectroscopy (AAS) is a spectroanalytical procedure for the quantitative measurement of chemical elements. AAS is based on the absorption of ...
GFAA spectrometry instruments have the following basic features: 1. a source of light (lamp) that emits resonance line radiation; 2. an atomization chamber (graphite tube) in which the sample is vaporized; 3. a monochromator for selecting only one of the characteristic wavelengths (visible or ultraviolet) of the element of interest; 4. a detector, generally a photomultiplier tube (light ...
The nature of the excited and ground states depends only on the element. Ordinarily, there are no bonds to be broken, and molecular orbital theory is not applicable. The emission spectrum observed in flame test is also the basis of flame emission spectroscopy, atomic emission spectroscopy, and flame photometry. [4] [13]
In atomic absorption spectroscopy, light of a predetermined wavelength is passed through a collection of atoms. If the wavelength of the source light has energy corresponding to the energy difference between two energy levels in the atoms, a portion of the light will be absorbed.
Inductively coupled plasma atomic emission spectrometer. Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample.
For example, when platinum wire is dipped into a sodium nitrate solution and then inserted into a flame, the sodium atoms emit an amber yellow color. Similarly, when indium is inserted into a flame, the flame becomes blue. These definite characteristics allow elements to be identified by their atomic emission spectrum.
Flame photometry is a type of atomic emission spectroscopy. It is also known as flame emission spectroscopy. [1] [2] A photoelectric flame photometer is an instrument used in inorganic chemical analysis to determine the concentration of certain metal ions, among them sodium, potassium, lithium, and calcium. [3]
Alternatively, salt (sodium chloride) on a ceramic stick can be placed in the flame of Bunsen burner as the sodium vapor source. When the magnetic field is energized, the lamp image will be brighter. [16] However, the magnetic field also affects the flame, making the observation depend upon more than just the Zeeman effect. [15]