Search results
Results from the WOW.Com Content Network
The benz, named in honour of Karl Benz, has been proposed as a name for one metre per second. [10] Although it has seen some support as a practical unit, [11] primarily from German sources, [10] it was rejected as the SI unit of velocity [12] and has not seen widespread use or acceptance.
≡ 1 nmi/h = 1.852 km/h = 0.51 4 m/s knot (Admiralty) kn ≡ 1 NM (Adm)/h = 1.853 184 km/h [29] = 0.514 77 3 m/s mach number: M: Ratio of the speed to the speed of sound [note 1] in the medium (unitless). ≈ 340 m/s in air at sea level ≈ 295 m/s in air at jet altitudes metre per second (SI unit) m/s ≡ 1 m/s = 1 m/s mile per hour: mph ≡ ...
SI, and hence the use of "km/h" (or "km h −1 " or "km·h −1 ") has now been adopted around the world in many areas related to health and safety [36] and in metrology [37] in addition to the SI unit metres per second ("m/s", "m s −1 " or "m·s −1 "). SI is also the preferred system of measure in academia and in education.
Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity. [5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.
Medieval unit of time used by astronomers to compute astronomical movements, length varies with the season. [4] Also colloquially refers to a brief period of time. centiday 0.01 d (1 % of a day) 14.4 minutes, or 864 seconds. One-hundredth of a day is 1 cd (centiday), also called "kè" in tradidional Chinese timekeeping.
For example, if a distance of 80 kilometres is driven in 1 hour, the average speed is 80 kilometres per hour. Likewise, if 320 kilometres are travelled in 4 hours, the average speed is also 80 kilometres per hour. When a distance in kilometres (km) is divided by a time in hours (h), the result is in kilometres per hour (km/h).
T 25 is 298.15 K (= 25 °C = 77 °F), giving a value of 346.1 m/s (= 1 135.6 ft/s = 1246 km/h = 774.3 mph = 672.8 kn). In fact, assuming an ideal gas , the speed of sound c depends on temperature and composition only, not on the pressure or density (since these change in lockstep for a given temperature and cancel out).
It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd, to be 683 when expressed in the unit lm W −1, which is equal to cd sr W −1, or cd sr kg −1 m −2 s 3, where the kilogram, metre and second are defined in terms of h, c and ∆ν Cs."