Search results
Results from the WOW.Com Content Network
Most spreadsheet programs can read CSV data, allowing CSV to be used as an intermediate format when transferring data from a database to a spreadsheet. CSV is also used for storing data. Common data science tools such as Pandas include the option to export data to CSV for long-term storage. [ 10 ]
In their book Pivot Table Data Crunching, [2] Bill Jelen and Mike Alexander refer to Pito Salas as the "father of pivot tables". While working on a concept for a new program that would eventually become Lotus Improv, Salas noted that spreadsheets have patterns of data. A tool that could help the user recognize these patterns would help to build ...
Many statistical and data processing systems have functions to convert between these two presentations, for instance the R programming language has several packages such as the tidyr package. The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow ...
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells. The term spreadsheet may also refer to one such electronic document. [5] [6] [7]
In-memory data structures: One can use hash tables and two-dimensional arrays in memory in conjunction with attribute-grouping metadata to pivot data, one group at a time. This data is written to disk as a flat delimited file, with the internal names for each attribute in the first row: this format can be readily bulk-imported into a relational ...
Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. The data may also be collected from sensors in the environment, including traffic cameras, satellites, recording devices, etc.
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").