Search results
Results from the WOW.Com Content Network
13 C NMR Spectrum of DMSO-d 6. Pure deuterated DMSO shows no peaks in 1 H NMR spectroscopy and as a result is commonly used as an NMR solvent. [2] However commercially available samples are not 100% pure and a residual DMSO-d 5 1 H NMR signal is observed at 2.50ppm (quintet, J HD =1.9Hz). The 13 C chemical shift of DMSO-d 6 is 39.52ppm (septet ...
This page provides supplementary chemical data on dimethyl sulfoxide. ... % by mole DMSO liquid vapor 55.80: 48.75: 1.0 64.50: 59.75 ... Other NMR data MS; Masses of ...
Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH 3) 2 S O.This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water.
Samples were prepared by dissolution in CDCl 3, D 2 O, or DMSO-d 6. [5] Each spectrum is accompanied by a list of the observed peaks with their respective chemical shifts in ppm and their intensities. Most spectra show the peak assignment. This collection contains ca 14,200 spectra and is being updated. [4]
A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.
SDBS includes 14700 1 H NMR spectra and 13000 13 C NMR spectra as well as FT-IR, Raman, ESR, and MS data. The data are stored and displayed as an image of the processed data. Annotation is achieved by a list of the chemical shifts correlated to letters which are also used to label a molecular line drawing.
Deuterated solvents are a group of compounds where one or more hydrogen atoms are substituted by deuterium atoms. These isotopologues of common solvents are often used in nuclear magnetic resonance spectroscopy .
When interpreting the COSY spectrum, diagonal peaks correspond to the 1D chemical shifts of individual nuclei, similar to the standard peaks in a 1D NMR spectrum. The key feature of a COSY spectrum is the presence of cross-peaks as shown in Figure 1, indicating coupling between pairs of nuclei.