Search results
Results from the WOW.Com Content Network
The chair conformation of six-membered rings have a dihedral angle of 60° between adjacent substituents thus usually making it the most stable conformer. Since there are two possible chair conformation steric and stereoelectronic effects such as the anomeric effect, 1,3-diaxial interactions, dipoles and intramolecular hydrogen bonding must be taken into consideration when looking at relative ...
In chemistry, a Haworth projection is a common way of writing a structural formula to represent the cyclic structure of monosaccharides with a simple three-dimensional perspective. Haworth projection approximate the shapes of the actual molecules better for furanoses —which are in reality nearly planar—than for pyranoses that exist in ...
Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure.
The diagram takes staggered and eclipsed conformations, as well as gauche and anti interactions into account. A staggered projection appears to have the surrounding species equidistant from each other. This kind of conformation tends to experience both anti and gauche interactions. [5]
A protein contact map represents the distance between all possible amino acid residue pairs of a three-dimensional protein structure using a binary two-dimensional matrix. For two residues i {\displaystyle i} and j {\displaystyle j} , the i j {\displaystyle ij} element of the matrix is 1 if the two residues are closer than a predetermined ...
In chemistry, the Fischer projection, devised by Emil Fischer in 1891, is a two-dimensional representation of a three-dimensional organic molecule by projection. Fischer projections were originally proposed for the depiction of carbohydrates and used by chemists, particularly in organic chemistry and biochemistry. The use of Fischer projections ...
Structure validation concept: model of a protein (each ball is an atom), and magnified region with electron density data and 3 bright flags for problems. Macromolecular structure validation is the process of evaluating reliability for 3-dimensional atomic models of large biological molecules such as proteins and nucleic acids.
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.