Search results
Results from the WOW.Com Content Network
A series is convergent (or converges) if and only if the sequence ... The reciprocals of square numbers produce a convergent series (the Basel problem):
Absolute convergence over sets. A generalization of the absolute convergence of a series, is the absolute convergence of a sum of a function over a set. We can first consider a countable set and a function We will give a definition below of the sum of over written as.
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
All instances of log (x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln (x) or loge(x). The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges.
The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number π 2 / 6 , or ζ(2) where ζ is the Riemann zeta function. The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ (3) , and equals approximately 1.2021 .
The Riemann zeta function is defined for real > by the convergent series = = = + + +, which for = would be the harmonic series. It can be extended by analytic continuation to a holomorphic function on all complex numbers except x = 1 {\displaystyle x=1} , where the extended function has a simple pole .
Together with series addition, series multiplication gives the sets of absolutely convergent series of real numbers or complex numbers the structure of a commutative ring, and together with scalar multiplication as well, the structure of a commutative algebra; these operations also give the sets of all series of real numbers or complex numbers ...
Calculus. In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity. where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.