enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    A series is convergent (or converges) if and only if the sequence ... The reciprocals of square numbers produce a convergent series (the Basel problem):

  3. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    Absolute convergence over sets. A generalization of the absolute convergence of a series, is the absolute convergence of a sum of a function over a set. We can first consider a countable set and a function We will give a definition below of the sum of over written as.

  4. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  5. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    All instances of log (x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln (x) or loge(x). The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges.

  6. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the square numbers (the Basel problem) is the transcendental number ⁠ π 2 / 6 ⁠, or ζ(2) where ζ is the Riemann zeta function. The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ (3) , and equals approximately 1.2021 .

  7. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The Riemann zeta function is defined for real > by the convergent series = = = + + +, which for = would be the harmonic series. It can be extended by analytic continuation to a holomorphic function on all complex numbers except x = 1 {\displaystyle x=1} , where the extended function has a simple pole .

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Together with series addition, series multiplication gives the sets of absolutely convergent series of real numbers or complex numbers the structure of a commutative ring, and together with scalar multiplication as well, the structure of a commutative algebra; these operations also give the sets of all series of real numbers or complex numbers ...

  9. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    Calculus. In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity. where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.