Search results
Results from the WOW.Com Content Network
In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from ...
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Study heterogeneity. In statistics, (between-) study heterogeneity is a phenomenon that commonly occurs when attempting to undertake a meta-analysis. In a simplistic scenario, studies whose results are to be combined in the meta-analysis would all be undertaken in the same way and to the same experimental protocols.
In statistics, a sequence of random variables is homoscedastic (/ ˌhoʊmoʊskəˈdæstɪk /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homoskedasticity and ...
A medical condition is termed heterogeneous, or a heterogeneous disease, if it has several etiologies (root causes); as opposed to homogeneous conditions, which have the same root cause for all patients in a given group. Examples of heterogeneous conditions are hepatitis and diabetes. Heterogeneity is not unusual, as medical conditions are ...
Heterogeneity in economics. In economic theory and econometrics, the term heterogeneity refers to differences across the units being studied. For example, a macroeconomic model in which consumers are assumed to differ from one another is said to have heterogeneous agents.
The endogeneity problem is particularly relevant in the context of time series analysis of causal processes. It is common for some factors within a causal system to be dependent for their value in period t on the values of other factors in the causal system in period t − 1.
Syntactic heterogeneity: is a result of differences in representation format of data; Schematic or structural heterogeneity: the native model or structure to store data differ in data sources leading to structural heterogeneity. Schematic heterogeneity that particularly appears in structured databases is also an aspect of structural ...