Search results
Results from the WOW.Com Content Network
The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.
Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection [4] discusses the general pattern in various local outlier detection methods (including, e.g., LOF, a simplified version of LOF and LoOP) and abstracts from this into a general framework. This framework is then ...
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. [ 2 ] Anomalies are instances or collections of data that occur very rarely in the data set and whose features differ significantly from most of the data.
For premium support please call: 800-290-4726 more ways to reach us
However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set