enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    This efficiency can be described by the number of division steps the algorithm requires, multiplied by the computational expense of each step. The first known analysis of Euclid's algorithm is due to A. A. L. Reynaud in 1811, [87] who showed that the number of division steps on input (u, v) is bounded by v; later he improved this to v/2 + 2

  3. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  5. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The division yields a quotient of + with a remainder of −1, which, since it is odd, has a last bit of 1. In the above equations, x 3 + x 2 + x {\displaystyle x^{3}+x^{2}+x} represents the original message bits 111 , x + 1 {\displaystyle x+1} is the generator polynomial, and the remainder 1 {\displaystyle 1} (equivalently, x 0 {\displaystyle x ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  7. HP-34C - Wikipedia

    en.wikipedia.org/wiki/HP-34C

    The calculator was superseded, in 1982, by the HP-15C.. Although it is argued the HP-41C (introduced late 1979 and only a matter of months after the HP-34C) was a replacement for the HP-34C, they were in fact differentiated as much by price (the HP-34C being 50% that of the HP-41C) as by functionality and performance (the HP-41C being the first HP LCD-based and module-expandable calculator ...

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Like for the integers, the Euclidean division of the polynomials may be computed by the long division algorithm. This algorithm is usually presented for paper-and-pencil computation, but it works well on computers when formalized as follows (note that the names of the variables correspond exactly to the regions of the paper sheet in a pencil ...

  9. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.