enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y.

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The computational complexity of the computation of greatest common divisors has been widely studied. [18] If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is O(n 2). This means that the computation of greatest ...

  4. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    An analogous argument shows that c also divides the subsequent remainders r 1, r 2, etc. Therefore, the greatest common divisor g must divide r N−1, which implies that g ≤ r N−1. Since the first part of the argument showed the reverse (r N−1 ≤ g), it follows that g = r N−1. Thus, g is the greatest common divisor of all the ...

  5. Wikipedia:Reference desk/Archives/Science/October 2005 ...

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    425.3 rosenberg generator. 2 comments ... least common multiple of n and 36 is 500 greater than the greatest common factor of n and 36. ... days, I used to download ...

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720 Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are ...

  8. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Default generator in R and the Python language starting from version 2.3. Xorshift: 2003 G. Marsaglia [26] It is a very fast sub-type of LFSR generators. Marsaglia also suggested as an improvement the xorwow generator, in which the output of a xorshift generator is added with a Weyl sequence.

  9. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    The largest factor found using ECM so far has 83 decimal digits and was discovered on 7 September 2013 by R. Propper. [1] Increasing the number of curves tested improves the chances of finding a factor, but they are not linear with the increase in the number of digits.