Search results
Results from the WOW.Com Content Network
From 2002 until 2009, Kanada held the world record calculating the number of digits in the decimal expansion of pi – exactly 1.2411 trillion digits. [1] The calculation took more than 600 hours on 64 nodes of a HITACHI SR8000/MPP supercomputer. Some of his competitors in recent years include Jonathan and Peter Borwein and the Chudnovsky brothers.
1 TB SATA II (Boot drive) – Hitachi (HDS721010CLA332), 3× 2 TB SATA II (Store Pi Output) – Seagate (ST32000542AS) 16× 2 TB SATA II (Computation) – Seagate (ST32000641AS) Windows Server 2008 R2 Enterprise (x64) Computation of binary digits: 80 days; Conversion to base 10: 8.2 days; Verification of the conversion: 45.6 hours
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
The software may be obtained from the Pi-Hacks Yahoo! forum, or from Stu's Pi page. Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 ...
Later computers calculated pi to extraordinary numbers of digits (2.7 trillion as of August 2010), [4] and people began memorizing more and more of the output. The world record for the number of digits memorized has exploded since the mid-1990s, and it stood at 100,000 as of October 2006. [ 6 ]
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.
Following the steps above, we can create a β-expansion for a real number (the steps are identical for an <, although n must first be multiplied by −1 to make it positive, then the result must be multiplied by −1 to make it negative again).
The United States dollar (symbol: $; currency code: USD; also abbreviated US$ to distinguish it from other dollar-denominated currencies; referred to as the dollar, U.S. dollar, American dollar, or colloquially buck) is the official currency of the United States and several other countries.