Search results
Results from the WOW.Com Content Network
The effects of temperature on enzyme activity. Top: increasing temperature increases the rate of reaction (Q10 coefficient). Middle: the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom: consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.
The effects of temperature on enzyme activity. Top - increasing temperature increases the rate of reaction (Q 10 coefficient). Middle - the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom - consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.
BOD test bottles at the laboratory of a wastewater treatment plant. Biochemical oxygen demand (also known as BOD or biological oxygen demand) is an analytical parameter representing the amount of dissolved oxygen (DO) consumed by aerobic bacteria growing on the organic material present in a water sample at a specific temperature over a specific time period.
The thermally neutral air temperature for an unprotected resting human is about 28 °C (82 °F), and the thermally neutral temperature in water is about 35 °C (95 °F), much closer to normal body temperature. This difference is due to the very different physical properties of the media.
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Reactions catalyzed by soluble epoxide hydrolase. The form of sEH in the intracellular environment is a homodimer with two distinct activities in two separate structural domains of each monomer: the C-terminal epoxide hydrolase activity (soluble epoxide hydrolase: EC 3.3.2.10) and the N-terminal phosphatase activity (lipid-phosphate phosphatase: EC 3.1.3.76).
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
English: Graph showing the effect of temperature on enzymes. This is not using real data, just a diagram to show what the general pattern is. (Optimal temp = 37.5°C ...