Search results
Results from the WOW.Com Content Network
A schematic representation of long distance electric power transmission. From left to right: G=generator, U=step-up transformer, V=voltage at beginning of transmission line, Pt=power entering transmission line, I=current in wires, R=total resistance in wires, Pw=power lost in transmission line, Pe=power reaching the end of the transmission line, D=step-down transformer, C=consumers.
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
An induction generator draws reactive excitation current from an external source. Induction generators have an AC rotor and cannot bootstrap using residual magnetization to black start a de-energized distribution system as synchronous machines do. Power factor correcting capacitors can be added externally to neutralize a constant amount of the ...
When the machine is used as a generator, the armature EMF drives the armature current, and the shaft's movement is converted to electrical power. In an induction generator, generated power is drawn from the stator. A growler is used to check the armature for short and open circuits and leakages to ground.
Elementary generator is an example of single-phase generators with two poles. Single-phase generator (also known as single-phase alternator) is an alternating current electrical generator that produces a single, continuously alternating voltage. Single-phase generators can be used to generate power in single-phase electric power systems.
U.S. NRC image of a modern steam turbine generator (STG). In electricity generation, a generator [1] is a device that converts motion-based power (potential and kinetic energy) or fuel-based power (chemical energy) into electric power for use in an external circuit.
In an alternating current (AC) electric power system, synchronization is the process of matching the frequency, phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.