Search results
Results from the WOW.Com Content Network
The respiration reaction which utilizes oxygen as oxidant to produce energy from glucose is the following: C 6 H 12 O 6 (aq) + 6 O 2 (g) → 6 CO 2 (g) + 6 H 2 O. Classically, it was thought that denitrification would not occur in the presence of oxygen since there seems to be no energetic advantage to using nitrate as an oxidant when oxygen is ...
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Aerobic denitrifiers are mainly Gram-negative bacteria in the phylum Proteobacteria. Enzymes NapAB, NirS, NirK and NosZ are located in the periplasm, a wide space bordered by the cytoplasmic and the outer membrane in Gram-negative bacteria. [16] A variety of environmental factors can influence the rate of denitrification on an ecosystem-wide scale.
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
M. oxyfera-like bacteria are bacteria similar to Candidatus Methylomirabilis oxyfera, which is a species of bacteria that acts as a denitrifying methanotroph. [ 13 ] The results from the study on Lake Constance found that nitrate was depleted in the water at the same depth as methane, which suggests that methane oxidation was coupled to ...
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.
These chemicals inflict extensive cellular damage to different systems such as the bacterial membrane, denaturation of proteins, and interference with biomolecules such as amino acids, nucleic acids, and lipids. [4] Another type of stressor could be the absence of a favorable electron acceptor for cellular respiration.