Search results
Results from the WOW.Com Content Network
e. In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed or with an > 0 for all n. Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit.
Series. In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion.
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...
Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...
A series is convergent (or converges) if and only if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
v. t. e. In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862. [1]
Cauchy product. In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy.
In celestial mechanics, the Stumpff functions were developed by Karl Stumpff for analyzing trajectories and orbits using the universal variable formulation. [1][2][3] They are defined by the alternating series: {\displaystyle ~~k=0,1,2,3,\ \ldots ~~.} Like the sine, cosine, and exponential functions, Stumpf functions are well-behaved entire ...