Search results
Results from the WOW.Com Content Network
From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...
The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.
Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity.Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects.
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
Early results about relative orbital motion were published by George William Hill in 1878. [3] Hill's paper discussed the orbital motion of the moon relative to the Earth.. In 1960, W. H. Clohessy and R. S. Wiltshire published the Clohessy–Wiltshire equations to describe relative orbital motion of a general satellite for the purpose of designing control systems to achieve orbital rendezvous.
A low energy transfer, or low energy trajectory, is a route in space which allows spacecraft to change orbits using very little fuel. [ 10 ] [ 11 ] These routes work in the Earth - Moon system and also in other systems, such as traveling between the satellites of Jupiter .
Simplified Deep Space Perturbations (SDP) models apply to objects with an orbital period greater than 225 minutes, which corresponds to an altitude of 5,877.5 km, assuming a circular orbit. [3] The SGP4 and SDP4 models were published along with sample code in FORTRAN IV in 1988 with refinements over the original model to handle the larger ...