enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue life scatter tends to increase for longer fatigue lives. Damage is irreversible. Materials do not recover when rested. Fatigue life is influenced by a variety of factors, such as temperature, surface finish, metallurgical microstructure, presence of oxidizing or inert chemicals, residual stresses, scuffing contact , etc.

  3. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1] Some metals such as ferrous alloys and titanium alloys have a distinct limit, [ 2 ] whereas others such as aluminium and copper do not and will eventually fail even from ...

  4. Static fatigue - Wikipedia

    en.wikipedia.org/wiki/Static_fatigue

    Static fatigue tests can be used to determine the lifespan of a material with different loads and environmental conditions. [13] [14] However, accurately assessing a material's true static fatigue life presents challenges, as these tests often require an extended duration and there is significant variability in the results.

  5. Basquin's law - Wikipedia

    en.wikipedia.org/wiki/Basquin's_law

    It is a fundamental principle in materials science that describes the relationship between the stress amplitude experienced by a material and its fatigue life under cyclic loading conditions. The law is named after American scientist O. H. Basquin, who introduced the law in 1910.

  6. Goodman relation - Wikipedia

    en.wikipedia.org/wiki/Goodman_relation

    Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]

  7. Low-cycle fatigue - Wikipedia

    en.wikipedia.org/wiki/Low-cycle_fatigue

    ε f ' is an empirical constant known as the fatigue ductility coefficient defined by the strain intercept at 2N =1; c is an empirical constant known as the fatigue ductility exponent, commonly ranging from -0.5 to -0.7. Small c results in long fatigue life. ς f ' is a constant known as the fatigue strength coefficient

  8. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    Corrosion fatigue is fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life.

  9. Crack growth equation - Wikipedia

    en.wikipedia.org/wiki/Crack_growth_equation

    A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ...