Search results
Results from the WOW.Com Content Network
Direct evidence for these eddies has been found in satellite altimetry data, [1] ship borne surveys, [2] and moored current meter records. [3] These same current meter records, that were over two years in length, failed to show a strong, consistent current along the Mozambican coast, largely dispelling the notion of a steady Mozambique Current.
Cyclonic eddies rotate anticlockwise (clockwise) in the Northern (Southern) hemisphere and have a cold core. Anticyclonic eddies rotate clockwise (anticlockwise) in the Northern (Southern) hemisphere and have a warm core. The temperature and salinity difference between the eddy core and the surrounding waters is the key element driving vertical ...
The Great Whirl is a huge anti-cyclonic eddy generated by the Somali current flowing in (northern) summer, and one of the two gigantic Indian Ocean Gyres (the other is the Socotra Gyre). The Great Whirl can be observed between 5-10°N and 52-57°E off the Somali coast in the summer season, a location typically around 200 km southwest of the ...
The Gulf of Alaska coastal area includes the offshore Alaska Current, Alaskan Stream, Alaska Coastal Current and some eddies. In the eastern part of the Gulf of Alaska, the Alaska Current flows counterclockwise, and it is relatively wide (> 100 km) meandering and slow (3–6 m/min). [1]
The world's largest ocean gyres. Western boundary currents may themselves be divided into sub-tropical or low-latitude western boundary currents. Sub-tropical western boundary currents are warm, deep, narrow, and fast-flowing currents that form on the west side of ocean basins due to western intensification. They carry warm water from the ...
View of the currents surrounding the gyre. The North Atlantic Gyre of the Atlantic Ocean is one of five great oceanic gyres.It is a circular ocean current, with offshoot eddies and sub-gyres, across the North Atlantic from the Intertropical Convergence Zone (calms or doldrums) to the part south of Iceland, and from the east coasts of North America to the west coasts of Europe and Africa.
These types of mesoscale eddies have been observed in many major ocean currents, including the Gulf Stream, the Agulhas Current, the Kuroshio Current, and the Antarctic Circumpolar Current, amongst others. Mesoscale ocean eddies are characterized by currents that flow in a roughly circular motion around the center of the eddy.
Its contributing currents are the Loop Current and the Antilles Current. The current was discovered by Spanish explorer Juan Ponce de León in 1513. The Florida Current results from the movement of water pushed from the Atlantic into the Caribbean Sea by the rotation of the Earth (which exerts a greater force at the equator ).