Search results
Results from the WOW.Com Content Network
Minkowski space is a pseudo-Euclidean space equipped with an isotropic quadratic form called the spacetime interval or the Minkowski norm squared. An event in Minkowski space for which the spacetime interval is zero is on the null cone of the origin, called the light cone in Minkowski space.
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
The interval imparts information about the causal structure of spacetime. When d s 2 < 0 {\displaystyle ds^{2}<0} , the interval is timelike and the square root of the absolute value of d s 2 {\displaystyle ds^{2}} is an incremental proper time .
The Poincaré group consists of all coordinate transformations of Minkowski space that do not change the spacetime interval between events.For example, if everything were postponed by two hours, including the two events and the path you took to go from one to the other, then the time interval between the events recorded by a stopwatch that you carried with you would be the same.
A notation like Δr 2 means (Δr) 2. The reason s 2 and not s is called the interval is that s 2 can be positive, zero or negative. Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c 2 Δt 2) or the spatial separation (Δr 2) of the two events is greater: time-like, light-like or space-like.
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl 1,3 (R), or equivalently the geometric algebra G(M 4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and ...
Writing the coordinates in column vectors and the Minkowski metric η as a square matrix ′ = [′ ′ ′ ′], = [], = [] the spacetime interval takes the form (superscript T denotes transpose) = = ′ ′ and is invariant under a Lorentz transformation ′ = where Λ is a square matrix which can depend on parameters.
The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...