Search results
Results from the WOW.Com Content Network
Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [ 2 ] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles.
Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet's magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.
The positive pole of a planet is defined by the right-hand rule: if the fingers of the right hand are curled in the direction of the rotation then the thumb points to the positive pole. The axial tilt is defined as the angle between the direction of the positive pole and the normal to the orbital plane.
The apsides are the orbital points farthest (apoapsis) and closest (periapsis) from its primary body. The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit. Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion.
For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation ...
Since the word "inclination" is used in exoplanet studies for this line-of-sight inclination, the angle between the planet's orbit and its star's rotational axis is expressed using the term the "spin-orbit angle" or "spin-orbit alignment". [5] In most cases the orientation of the star's rotational axis is unknown.
However, the two are constrained by their mutual resonance with Neptune to always be in opposite phases of their orbits; Orcus is thus sometimes described as the "anti-Pluto". [32] Depiction of the resonance between Neptune's moons Naiad (whose orbital motion is shown in red) and Thalassa, in a view that co-rotates with the latter
The north orbital poles of the Solar System major planets all lie within Draco. [1] The central yellow dot represents the Sun's rotation axis north pole. [citation needed] Jupiter's north orbital pole is colored orange, Mercury's pale blue, Venus's green, Earth's blue, Mars's red, Saturn's magenta, Uranus's grey, and Neptune's lavender.