enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  3. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    Metals. Above the Curie temperature, the atoms are excited, and the spin orientations become randomized [8] but can be realigned by an applied field, i.e., the material becomes paramagnetic. Below the Curie temperature, the intrinsic structure has undergone a phase transition, [15] the atoms are ordered, and the material is ferromagnetic. [11]

  4. Critical points of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Critical_points_of_the...

    CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements. Estimated accuracy for T c and P c is indicated by the number of digits.

  5. Ferromagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetism

    Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...

  6. Curie–Weiss law - Wikipedia

    en.wikipedia.org/wiki/Curie–Weiss_law

    In magnetism, the Curie–Weiss law describes the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the Curie temperature: where C is a material-specific Curie constant, T is the absolute temperature, and TC is the Curie temperature, both measured in kelvin. The law predicts a singularity in the susceptibility at T = TC.

  7. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Electron Magnetohydrodynamics (EMHD) describes small scales plasmas when electron motion is much faster than the ion one. The main effects are changes in conservation laws, additional resistivity, importance of electron inertia. Many effects of Electron MHD are similar to effects of the Two fluid MHD and the Hall MHD.

  8. Magnetosphere - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere

    The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...

  9. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    In statistical mechanics, the thermodynamic limit or macroscopic limit, [1] of a system is the limit for a large number N of particles (e.g., atoms or molecules) where the volume V is taken to grow in proportion with the number of particles. [2] The thermodynamic limit is defined as the limit of a system with a large volume, with the particle ...