enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Locally compact space - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_space

    The Sierpiński space is locally compact in senses (1), (2) and (3), and compact as well, but it is not Hausdorff or regular (or even preregular) so it is not locally compact in senses (4) or (5). The disjoint union of countably many copies of Sierpiński space is a non-compact space which is still locally compact in senses (1), (2) and (3 ...

  3. Compact space - Wikipedia

    en.wikipedia.org/wiki/Compact_space

    Every topological space X is an open dense subspace of a compact space having at most one point more than X, by the Alexandroff one-point compactification. By the same construction, every locally compact Hausdorff space X is an open dense subspace of a compact Hausdorff space having at most one point more than X.

  4. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    The first definition is usually taken for locally compact, countably compact, metrizable, separable, countable; the second for locally connected. [15] Locally closed subset A subset of a topological space that is the intersection of an open and a closed subset. Equivalently, it is a relatively open subset of its closure. Locally compact

  5. Compactly generated space - Wikipedia

    en.wikipedia.org/wiki/Compactly_generated_space

    In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other.

  6. Locally compact field - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_field

    In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. [1] These kinds of fields were originally introduced in p-adic analysis since the fields Q p {\displaystyle \mathbb {Q} _{p}} are locally compact topological spaces constructed from the norm | ⋅ | p {\displaystyle |\cdot |_{p ...

  7. Perfect map - Wikipedia

    en.wikipedia.org/wiki/Perfect_map

    In mathematics, especially topology, a perfect map is a particular kind of continuous function between topological spaces. Perfect maps are weaker than homeomorphisms, but strong enough to preserve some topological properties such as local compactness that are not always preserved by continuous maps.

  8. σ-compact space - Wikipedia

    en.wikipedia.org/wiki/Σ-compact_space

    A Hausdorff, Baire space that is also σ-compact, must be locally compact at at least one point. If G is a topological group and G is locally compact at one point, then G is locally compact everywhere. Therefore, the previous property tells us that if G is a σ-compact, Hausdorff topological group that is also a Baire space, then G is

  9. Locally compact group - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_group

    Any compact group is locally compact.. In particular the circle group T of complex numbers of unit modulus under multiplication is compact, and therefore locally compact. The circle group historically served as the first topologically nontrivial group to also have the property of local compactness, and as such motivated the search for the more general theory, presented here.