enow.com Web Search

  1. Ads

    related to: conjugation design examples geometry

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate points - Wikipedia

    en.wikipedia.org/wiki/Conjugate_points

    In differential geometry, conjugate points or focal points [1] [2] are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing.

  3. Isogonal conjugate - Wikipedia

    en.wikipedia.org/wiki/Isogonal_conjugate

    As isogonal conjugation is a function, it makes sense to speak of the isogonal conjugate of sets of points, such as lines and circles. For example, the isogonal conjugate of a line is a circumconic; specifically, an ellipse, parabola, or hyperbola according as the line intersects the circumcircle in 0, 1, or 2 points.

  4. Projective harmonic conjugate - Wikipedia

    en.wikipedia.org/wiki/Projective_harmonic_conjugate

    In projective geometry, the harmonic conjugate point of a point on the real projective line with respect to two other points is defined by the following construction: Given three collinear points A, B, C , let L be a point not lying on their join and let any line through C meet LA, LB at M, N respectively.

  5. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other." [5] Only one of the conjugate diameters of a hyperbola cuts the curve.

  6. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.

  7. Conjugate element (field theory) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_element_(field...

    Given then a normal extension L of K, with automorphism group Aut(L/K) = G, and containing α, any element g(α) for g in G will be a conjugate of α, since the automorphism g sends roots of p to roots of p. Conversely any conjugate β of α is of this form: in other words, G acts transitively on the conjugates.

  8. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    The line joining two self-conjugate points cannot be a self-conjugate line. A line cannot contain more than two self-conjugate points. A polarity induces an involution of conjugate points on any line that is not self-conjugate. A triangle in which each vertex is the pole of the opposite side is called a self-polar triangle.

  9. Racks and quandles - Wikipedia

    en.wikipedia.org/wiki/Racks_and_quandles

    In fact, every equational law satisfied by conjugation in a group follows from the quandle axioms. So, one can think of a quandle as what is left of a group when we forget multiplication, the identity, and inverses, and only remember the operation of conjugation. Every tame knot in three-dimensional Euclidean space has a 'fundamental quandle'.

  1. Ads

    related to: conjugation design examples geometry