Search results
Results from the WOW.Com Content Network
Subsequences can contain consecutive elements which were not consecutive in the original sequence. A subsequence which consists of a consecutive run of elements from the original sequence, such as ,, , from ,,,,, , is a substring. The substring is a refinement of the subsequence.
Is a subfield of calculus [30] concerned with the study of the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus, the study of the area beneath a curve. [31] differential equation Is a mathematical equation that relates some function with its derivatives. In applications ...
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
The idea of a limit is fundamental to calculus (and mathematical analysis in general) and its formal definition is used in turn to define notions like continuity, derivatives, and integrals. (In fact, the study of limiting behavior has been used as a characteristic that distinguishes calculus and mathematical analysis from other branches of ...
This definition covers several different uses of the word "sequence", including one-sided infinite sequences, bi-infinite sequences, and finite sequences (see below for definitions of these kinds of sequences). However, many authors use a narrower definition by requiring the domain of a sequence to be the set of natural numbers. This narrower ...
In applied fields the word "tight" is often used with the same meaning. [2] smooth Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion ...
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing.