Search results
Results from the WOW.Com Content Network
Mathematics, Form and Function, a book published in 1986 by Springer-Verlag, is a survey of the whole of mathematics, including its origins and deep structure, by the American mathematician Saunders Mac Lane.
In differential geometry, a one-form (or covector field) on a differentiable manifold is a differential form of degree one, that is, a smooth section of the cotangent bundle. [1] Equivalently, a one-form on a manifold is a smooth mapping of the total space of the tangent bundle of to whose restriction to each fibre is a linear functional on the ...
A general 1-form is a linear combination of these differentials at every point on the manifold: + +, where the f k = f k (x 1, ... , x n) are functions of all the coordinates. A differential 1-form is integrated along an oriented curve as a line integral.
The apparent plural form in English goes back to the Latin neuter plural mathematica , based on the Greek plural ta mathēmatiká (τὰ μαθηματικά) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of ...
The books in this series, like the other Springer-Verlag mathematics series, are small yellow books of a standard size. The books in this series tend to be written at a more elementary level than the similar Graduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and ...
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers.
In mathematics, a linear form (also known as a linear functional, [1] a one-form, or a covector) is a linear map [nb 1] from a vector space to its field of scalars (often, the real numbers or the complex numbers).
The second and the third chapters, "Schemes" and "Cohomology", form the technical heart of the book. The last two chapters, "Curves" and "Surfaces", respectively explore the geometry of 1- and 2-dimensional objects, using the tools developed in the chapters 2 and 3.