Search results
Results from the WOW.Com Content Network
Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O 2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids.
Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...
Photosynthetic water splitting (or oxygen evolution) is one of the most important reactions on the planet, since it is the source of nearly all the atmosphere's oxygen. Moreover, artificial photosynthetic water-splitting may contribute to the effective use of sunlight as an alternative energy-source.
X-ray crystal structure of the Mn 4 O 5 Ca core of the oxygen evolving complex of Photosystem II at a resolution of 1.9 Å. [2] The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. [3]
X-ray Crystal structure of the Mn 4 O 5 Ca core of the oxygen evolving complex of Photosystem II at a resolution of 1.9 Å. [1] Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons: 2 H 2 O → 4 H + + 4 e − + O 2. Many catalysts are effective, both homogeneous catalysts and ...
The oxygen-evolving complex (OEC) is a critical component of photosystem II contained in the thylakoid membranes of chloroplasts; it is responsible for terminal photooxidation of water during light reactions. [11] The incorporation of Mn in proteins allowed the complexes the ability to reduce reactive oxygen species in Mn-superoxide dismutase ...
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
Oxygen gas is increasingly obtained by these non-cryogenic technologies (see also the related vacuum swing adsorption). [103] Oxygen gas can also be produced through electrolysis of water into molecular oxygen and hydrogen. DC electricity must be used: if AC is used, the gases in each limb consist of hydrogen and oxygen in the explosive ratio 2:1.