Ads
related to: algebraic proof practice questions
Search results
Results from the WOW.Com Content Network
A proof of this conjecture, together with the more powerful geometrization conjecture, was given by Grigori Perelman in 2002 and 2003. Perelman's solution completed Richard Hamilton 's program for the solution of the geometrization conjecture, which he had developed over the course of the preceding twenty years.
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
Quadratic forms with any algebraic numerical coefficients 12. Extensions of Kronecker's theorem on Abelian fields to any algebraic realm of rationality 13. Impossibility of the solution of the general equation of 7th degree by means of functions of only two arguments. 14. Proof of the finiteness of certain complete systems of functions. 15.
It was first conjectured in 1939 by Ott-Heinrich Keller, [1] and widely publicized by Shreeram Abhyankar, as an example of a difficult question in algebraic geometry that can be understood using little beyond a knowledge of calculus. The Jacobian conjecture is notorious for the large number of attempted proofs that turned out to contain subtle ...
These proofs of the Fundamental Theorem of Algebra must make use of the following two facts about real numbers that are not algebraic but require only a small amount of analysis (more precisely, the intermediate value theorem in both cases):
The proof [3] is based on a fact that a semigroup S is finitely generated if and only if its semigroup algebra [] is a finitely generated algebra over . To prove Gordan's lemma, by induction (cf. the proof above), it is enough to prove the following statement: for any unital subsemigroup S of Z d {\displaystyle \mathbb {Z} ^{d}} ,
Ads
related to: algebraic proof practice questions