enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The limit of a sequence of powers of a number greater than one diverges; in other words, the sequence grows without bound: b n → ∞ as n → ∞ when b > 1. This can be read as "b to the power of n tends to +∞ as n tends to infinity when b is greater than one". Powers of a number with absolute value less than one tend to zero: b n → 0 as ...

  4. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n2 k ) = n ( n2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  5. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)

  6. Hyperoperation - Wikipedia

    en.wikipedia.org/wiki/Hyperoperation

    The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...

  7. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.

  8. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    An n-sided regular polygon can be constructed with compass and straightedge if and only if n is either a power of 2 or the product of a power of 2 and distinct Fermat primes: in other words, if and only if n is of the form n = 2 k or n = 2 k p 1 p 2...p s, where k, s are nonnegative integers and the p i are distinct Fermat primes.

  9. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The product of all primes up to is an ()-bit number, by the prime number theorem, so the time for the first step is (⁡), with one logarithm coming from the divide and conquer and another coming from the multiplication algorithm.