Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
The lower part of the thermosphere, from 80 to 550 kilometres (50 to 342 mi) above Earth's surface, contains the ionosphere. The temperature of the thermosphere gradually increases with height and can rise as high as 1500 °C (2700 °F), though the gas molecules are so far apart that its temperature in the usual sense is not very meaningful.
The reaction of the thermosphere to a large magnetospheric storm is called a thermospheric storm. Since the heat input into the thermosphere occurs at high latitudes (mainly into the auroral regions), the heat transport is represented by the term P 2 0 in eq.(3) is reversed. Also, due to the impulsive form of the disturbance, higher-order terms ...
The ionosphere, an ionized portion of the upper atmosphere which includes the upper mesosphere, thermosphere, and lower exosphere and on Earth lies between the altitudes of 48 and 965 kilometres (30 and 600 mi)
The thermosphere extends from an altitude of 85 km to the base of the exosphere at 690 km and contains the ionosphere, where solar radiation ionizes the atmosphere. The density of the ionosphere is greater at short distances from the planetary surface in the daytime and decreases as the ionosphere rises at night-time, thereby allowing a greater ...
Total Electron Content (TEC) is a measure of the ionosphere over a given location. TEC is the number of electrons in a column one meter square from the base of the ionosphere (around 90 km altitude) to the top of the ionosphere (around 1000 km altitude). Many TEC measurements are made by monitoring the two frequencies transmitted by GPS ...
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
The Mesosphere, Lower Thermosphere and Ionosphere (MLTI) region of the atmosphere to be studied by TIMED is located between 60 and 180 kilometres (37 and 112 mi) above the Earth's surface, where energy from solar radiation is first deposited into the atmosphere. This can have profound effects on Earth's upper atmospheric regions, particularly ...