enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter .

  3. Template:Band structure filling diagram - Wikipedia

    en.wikipedia.org/wiki/Template:Band_structure...

    The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap ; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated ...

  4. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  5. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    E i: The intrinsic Fermi level may be included in a semiconductor, to show where the Fermi level would have to be for the material to be neutrally doped (i.e., an equal number of mobile electrons and holes). E imp: Impurity energy level. Many defects and dopants add states inside the band gap of a semiconductor or insulator. It can be useful to ...

  6. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials: n i = n 0 = p 0 {\displaystyle n_{i}=n_{0}=p_{0}} The following table lists a few values of the intrinsic carrier concentration for intrinsic semiconductors , in order of increasing band gap.

  7. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    At absolute zero temperature, all of the electrons have energy below the Fermi level; but at non-zero temperatures the energy levels are filled following a Fermi-Dirac distribution. In undoped semiconductors the Fermi level lies in the middle of a forbidden band or band gap between two allowed bands called the valence band and the conduction ...

  8. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  9. Work function - Wikipedia

    en.wikipedia.org/wiki/Work_function

    This spacing is called the electron affinity (note that this has a different meaning than the electron affinity of chemistry); in silicon for example the electron affinity is 4.05 eV. [16] If the electron affinity E EA and the surface's band-referenced Fermi level E F-E C are known, then the work function is given by