Search results
Results from the WOW.Com Content Network
In mathematics, the notion of cancellativity (or cancellability) is a generalization of the notion of invertibility.. An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c.
In mathematics, a cancellative semigroup (also called a cancellation semigroup) is a semigroup having the cancellation property. [1] In intuitive terms, the cancellation property asserts that from an equality of the form a·b = a·c, where · is a binary operation, one can cancel the element a and deduce the equality b = c.
Many properties of a group – such as whether or not it is abelian, which elements are inverses of which elements, and the size and contents of the group's center – can be discovered from its Cayley table. A simple example of a Cayley table is the one for the group {1, −1} under ordinary multiplication:
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
A monoid (M, •) has the cancellation property (or is cancellative) if for all a, b and c in M, the equality a • b = a • c implies b = c, and the equality b • a = c • a implies b = c. A commutative monoid with the cancellation property can always be embedded in a group via the Grothendieck group construction.
The cancellation property holds in any integral domain: for any a, b, and c in an integral domain, if a ≠ 0 and ab = ac then b = c. Another way to state this is that the function x ↦ ax is injective for any nonzero a in the domain. The cancellation property holds for ideals in any integral domain: if xI = xJ, then either x is zero or I = J.
Catastrophic cancellation may happen even if the difference is computed exactly, as in the example above—it is not a property of any particular kind of arithmetic like floating-point arithmetic; rather, it is inherent to subtraction, when the inputs are approximations themselves.
In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group.