Search results
Results from the WOW.Com Content Network
In mathematics, the notion of cancellativity (or cancellability) is a generalization of the notion of invertibility.. An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c.
In mathematics, a cancellative semigroup (also called a cancellation semigroup) is a semigroup having the cancellation property. [1] In intuitive terms, the cancellation property asserts that from an equality of the form a·b = a·c, where · is a binary operation, one can cancel the element a and deduce the equality b = c.
In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group.
A cancellative semigroup is one having the cancellation property: [9] a · b = a · c implies b = c and similarly for b · a = c · a. Every group is a cancellative semigroup, and every finite cancellative semigroup is a group. A band is a semigroup whose operation is idempotent. A semilattice is a semigroup whose operation is idempotent and ...
The cancellation property holds in any integral domain: for any a, b, and c in an integral domain, if a ≠ 0 and ab = ac then b = c. Another way to state this is that the function x ↦ ax is injective for any nonzero a in the domain. The cancellation property holds for ideals in any integral domain: if xI = xJ, then either x is zero or I = J.
A monoid (M, •) has the cancellation property (or is cancellative) if for all a, b and c in M, the equality a • b = a • c implies b = c, and the equality b • a = c • a implies b = c. A commutative monoid with the cancellation property can always be embedded in a group via the Grothendieck group construction.
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
Many properties of a group – such as whether or not it is abelian, which elements are inverses of which elements, and the size and contents of the group's center – can be discovered from its Cayley table. A simple example of a Cayley table is the one for the group {1, −1} under ordinary multiplication: