Search results
Results from the WOW.Com Content Network
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
Thus, the nine-point center forms the center of a point reflection that maps the medial triangle to the Euler triangle, and vice versa. [citation needed] According to Lester's theorem, the nine-point center lies on a common circle with three other points: the two Fermat points and the circumcenter. [9] The Kosnita point of a triangle, a ...
Centroid of a triangle. In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. [further explanation needed] The same definition extends to any object in -dimensional Euclidean space. [1]
The point of intersection of angle bisectors of the 3 angles of triangle ABC is the incenter (denoted by I). The incircle (whose center is I) touches each side of the triangle. In geometry, the incenter of a triangle is a triangle center, a point
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. This resource is hosted at the University of Evansville . It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling .
Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.
Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ^, one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ^ is the following:
Let ABC be a plane triangle and let x : y : z be the trilinear coordinates of an arbitrary point in the plane of triangle ABC.. A straight line in the plane of ABC whose equation in trilinear coordinates has the form (,,) + (,,) + (,,) = where the point with trilinear coordinates (,,): (,,): (,,) is a triangle center, is a central line in the plane of ABC relative to ABC.