enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Origin (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Origin_(mathematics)

    The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...

  4. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    Full symmetry of the regular form is r12 and no symmetry is labeled a1. The regular hexagon has D 6 symmetry. There are 16 subgroups. There are 8 up to isomorphism: itself (D 6), 2 dihedral: (D 3, D 2), 4 cyclic: (Z 6, Z 3, Z 2, Z 1) and the trivial (e) These symmetries express nine distinct symmetries of a regular hexagon.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    An angle bisector of a triangle is a straight line through a vertex that cuts the corresponding angle in half. The three angle bisectors intersect in a single point, the incenter, which is the center of the triangle's incircle. The incircle is the circle that lies inside the triangle and touches all three sides. Its radius is called the inradius.

  6. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    For four given elements there is one non-trivial case, which is discussed below. For three given elements there are six cases: three sides, two sides and an included or opposite angle, two angles and an included or opposite side, or three angles. (The last case has no analogue in planar trigonometry.) No single method solves all cases.

  8. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles unless the angle specified is a right angle. Triangles are congruent if they have all three sides equal (SSS), two sides and the angle between them equal (SAS), or two angles and a side equal (ASA) (Book I, propositions 4, 8, and 26).

  9. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.