Search results
Results from the WOW.Com Content Network
Important transmission lines and generators have cubicles dedicated to protection, with many individual electromechanical devices, or one or two microprocessor relays. The theory and application of these protective devices is an important part of the education of a power engineer who specializes in power system protection. The need to act ...
If the ratio of voltage to current measured at the relay terminals, which equates to an impedance, lands within a predetermined level the circuit breaker will operate. This is useful for reasonably long lines, lines longer than 10 miles, because their operating characteristics are based on the line characteristics.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Whereas Shannon's approach and framework was abstract and based on mathematics, Nakashima tried to extend the existent circuit theory of the time to deal with relay circuits, and was reluctant to accept the mathematical and abstract model, favoring a grounded approach. [6]
A measure of impedance mismatch for transmission lines in microwave engineering; the ratio of peak amplitude of a standing wave to its minimum. star-mesh transform A mathematical technique used in circuit analysis. state observer In control theory, that which discovers and reports the internal state of a controlled system. state space ...
Protective relay. In utility and industrial electric power transmission and distribution systems, a numerical relay is a computer-based system with software-based protection algorithms for the detection of electrical faults. [1] Such relays are also termed as microprocessor type protective relays.
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
The impedance analogy is a method of representing a mechanical system by an analogous electrical system. The advantage of doing this is that there is a large body of theory and analysis techniques concerning complex electrical systems, especially in the field of filters. [1]