Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...
The fundamental equation describing the behavior of a rotating solid body is Euler's equation of motion: = = + = + = + where the pseudovectors τ and L are, respectively, the torques on the body and its angular momentum, the scalar I is its moment of inertia, the vector ω is its angular velocity, the vector α is its angular acceleration, D is ...
Statics · Dynamics; ... Defining equation SI units Dimension Flow velocity vector field u = (,) ... The Cambridge Handbook of Physics Formulas. Cambridge University ...
Relative velocities between two particles in classical mechanics. The figure shows two objects A and B moving at constant velocity. The equations of motion are: = +, = +, where the subscript i refers to the initial displacement (at time t equal to zero).
Eliminating the angular velocity dθ/dt from this radial equation, [47] ¨ = +. which is the equation of motion for a one-dimensional problem in which a particle of mass μ is subjected to the inward central force −dV/dr and a second outward force, called in this context the (Lagrangian) centrifugal force (see centrifugal force#Other uses of ...
The equations above thus represent respectively conservation of mass (1 scalar equation) and momentum (1 vector equation containing scalar components, where is the physical dimension of the space of interest). Flow velocity and pressure are the so-called physical variables. [1]