enow.com Web Search

  1. Ad

    related to: shear rate in a pipe

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate at the inner wall of a Newtonian fluid flowing within a pipe [2] is ˙ =, where: ˙ is the shear rate, measured in reciprocal seconds; v is the linear fluid velocity; d is the inside diameter of the pipe.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  4. Weissenberg number - Wikipedia

    en.wikipedia.org/wiki/Weissenberg_number

    The Weissenberg number indicates the degree of anisotropy or orientation generated by the deformation, and is appropriate to describe flows with a constant stretch history, such as simple shear. In contrast, the Deborah number should be used to describe flows with a non-constant stretch history, and physically represents the rate at which ...

  5. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  6. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    Here, the strain rate is simply the relative velocity divided by the distance between the plates. Shear flows in fluids tend to be unstable at high Reynolds numbers, when fluid viscosity is not strong enough to dampen out perturbations to the flow. For example, when two layers of fluid shear against each other with relative velocity, the Kelvin ...

  7. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...

  8. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity. For river base case, the shear velocity can be calculated by Manning's equation.

  9. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].

  1. Ad

    related to: shear rate in a pipe