Search results
Results from the WOW.Com Content Network
Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [ 2 ] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles.
Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet's magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.
The exact form of the metric g μν depends on the gravitating mass, momentum and energy, as described by the Einstein field equations. Einstein developed those field equations to match the then known laws of Nature; however, they predicted never-before-seen phenomena (such as the bending of light by gravity) that were confirmed later.
When the right-hand side of the equation is a positive real number, the solution corresponds to an epispiral. [22] When the argument θ 1 – θ 0 equals ±90°×k, the cosine goes to zero and the radius goes to infinity. Thus, when k is less than one, the range of allowed angles becomes small and the force is repulsive (red curve on right in ...
Prograde satellites of Uranus orbit in the direction Uranus rotates, which is retrograde to the Sun. Nearly all regular satellites are tidally locked and thus have prograde rotation. Retrograde satellites are generally small and distant from their planets, except Neptune's satellite Triton, which is large and close.
For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation ...
This phenomenon comes about through a loss of energy due to tidal forces raised by the planet, slowing the rotation of the satellite until it is negligible. [22] Exceptions are known; one such exception is Saturn's natural satellite Hyperion, which rotates chaotically because of the gravitational influence of Titan. Pluto's four, circumbinary ...
An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body's speed decreases and distance increases according to Kepler's ...