enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    John Wallis, English mathematician who is given partial credit for the development of infinitesimal calculus and pi. Viète's formula, a different infinite product formula for . Leibniz formula for π, an infinite sum that can be converted into an infinite Euler product for π. Wallis sieve

  3. John Wallis - Wikipedia

    en.wikipedia.org/wiki/John_Wallis

    John Wallis (/ ˈ w ɒ l ɪ s /; [2] Latin: Wallisius; 3 December [O.S. 23 November] 1616 – 8 November [O.S. 28 October] 1703) was an English clergyman and mathematician, who is given partial credit for the development of infinitesimal calculus.

  4. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    In mathematics, and more precisely in analysis, the Wallis integrals constitute a family of integrals introduced by John Wallis. Definition, basic properties [ edit ]

  5. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    The equation has two linearly independent solutions. At each of the three singular points 0, 1, ∞, there are usually two special solutions of the form x s times a holomorphic function of x, where s is one of the two roots of the indicial equation and x is a local variable vanishing at a regular singular point. This gives 3 × 2 = 6 special ...

  6. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    This equation is a definition of ... the logarithmic spiral by Evangelista Torricelli in 1645 (some sources say John Wallis in the 1650s), ...

  7. History of calculus - Wikipedia

    en.wikipedia.org/wiki/History_of_calculus

    The ancient period introduced some of the ideas that led to integral calculus, but does not seem to have developed these ideas in a rigorous and systematic way. . Calculations of volumes and areas, one goal of integral calculus, can be found in the Egyptian Moscow papyrus (c. 1820 BC), but the formulas are only given for concrete numbers, some are only approximately true, and they are not ...

  8. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for integrals was first demonstrated in a geometric form by Italian mathematician Bonaventura Cavalieri in the early 17th century for all positive integer values of , and during the mid 17th century for all rational powers by the mathematicians Pierre de Fermat, Evangelista Torricelli, Gilles de Roberval, John Wallis, and Blaise ...

  9. Wallis's conical edge - Wikipedia

    en.wikipedia.org/wiki/Wallis's_conical_edge

    Wallis's conical edge is also a kind of right conoid. It is named after the English mathematician John Wallis, who was one of the first to use Cartesian methods to study conic sections. [1] Figure 2. Wallis's Conical Edge with a = 1.01, b = c = 1 Figure 1. Wallis's Conical Edge with a = b = c = 1