Search results
Results from the WOW.Com Content Network
Dataset HF card, and project's GitHub repository. [393] Diggelmann et al. Climate News dataset A dataset for NLP and climate change media researchers The dataset is made up of a number of data artifacts (JSON, JSONL & CSV text files & SQLite database) Climate news DB, Project's GitHub repository [394] ADGEfficiency Climatext
An intelligent machine with the versatility to perform any intellectual task. Superintelligence. A machine with a level of intelligence far beyond human intelligence. Chinese room § Strong AI. A machine that has mind, consciousness and understanding. (Also, the philosophical position that any digital computer can have a mind by running the ...
Depending on the type and variation in training data, machine learning can be roughly categorized into three frameworks: supervised learning, unsupervised learning, and reinforcement learning. Multiple instance learning (MIL) falls under the supervised learning framework, where every training instance has a label, either discrete or real valued ...
When training a machine learning model, machine learning engineers need to target and collect a large and representative sample of data. Data from the training set can be as varied as a corpus of text , a collection of images, sensor data, and data collected from individual users of a service.
Danny Bobrow's dissertation at MIT (technical report #1 from MIT's AI group, Project MAC), shows that computers can understand natural language well enough to solve algebra word problems correctly. Bertram Raphael's MIT dissertation on the SIR program demonstrates the power of a logical representation of knowledge for question-answering systems ...
For example, there is a prototype, photonic, quantum memristive device for neuromorphic (quantum-)computers (NC)/artificial neural networks and NC-using quantum materials with some variety of potential neuromorphic computing-related applications, [367] [368] and quantum machine learning is a field with some variety of applications under ...
In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:
Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...