Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
Pages in category "Operations on sets" The following 11 pages are in this category, out of 11 total. ... Saturated set; List of set identities and relations;
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
An illustration of how the levels of the hierarchy interact and where some basic set categories lie within it. In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them.
In mathematical set theory, a set of Gödel operations is a finite collection of operations on sets that can be used to construct the constructible sets from ordinals. Gödel ( 1940 ) introduced the original set of 8 Gödel operations 𝔉 1 ,...,𝔉 8 under the name fundamental operations .
In mathematics, an operation is a function from a set to itself. For example, an operation on real numbers will take in real numbers and return a real number. An operation can take zero or more input values (also called "operands" or "arguments") to a well-defined output value.
The system of Anthony Morse's (1965) A Theory of Sets is equivalent to Kelley's, but formulated in an idiosyncratic formal language rather than, as is done here, in standard first-order logic. The first set theory to include impredicative class comprehension was Quine's ML, that built on New Foundations rather than on ZFC. [3]