Search results
Results from the WOW.Com Content Network
The Fashion MNIST dataset is a large freely available database of fashion images that is commonly used for training and testing various machine learning systems. [1] [2] Fashion-MNIST was intended to serve as a replacement for the original MNIST database for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits.
Fashion-MNIST: A MNIST-like fashion product database Classes labelled, training set splits created. 60,000 Images Classification 2017 [38] Zalando SE notMNIST Some publicly available fonts and extracted glyphs from them to make a dataset similar to MNIST. There are 10 classes, with letters A–J taken from different fonts.
Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [15] [16] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]
A direct predecessor of the StyleGAN series is the Progressive GAN, published in 2017. [9]In December 2018, Nvidia researchers distributed a preprint with accompanying software introducing StyleGAN, a GAN for producing an unlimited number of (often convincing) portraits of fake human faces.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]