Search results
Results from the WOW.Com Content Network
(A function of arity n thus has arity n+1 considered as a relation.) In computer programming, there is often a syntactical distinction between operators and functions; syntactical operators usually have arity 1, 2, or 3 (the ternary operator?: is also common). Functions vary widely in the number of arguments, though large numbers can become ...
The hypergeometric function is an example of a four-argument function. The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as f ( x ) = x 2 {\displaystyle f(x)=x^{2}} , is called a unary function .
An n-ary operation ω on a set X is a function ω: X n → X. The set X n is called the domain of the operation, the output set is called the codomain of the operation, and the fixed non-negative integer n (the number of operands) is called the arity of the operation. Thus a unary operation has arity one, and a binary operation has arity two.
The interpretation of a constant symbol (a function symbol of arity 0) is a function from D 0 (a set whose only member is the empty tuple) to D, which can be simply identified with an object in D. For example, an interpretation may assign the value I ( c ) = 10 {\displaystyle I(c)=10} to the constant symbol c {\displaystyle c} .
In a sense, these are nullary (i.e. 0-arity) predicates. In first-order logic, a predicate forms an atomic formula when applied to an appropriate number of terms. In set theory with the law of excluded middle, predicates are understood to be characteristic functions or set indicator functions (i.e., functions from a set element to a truth value).
In contrast, partial function application refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given the definition of f {\displaystyle f} above, we might fix (or 'bind') the first argument, producing a function of type partial ( f ) : ( Y × Z ) → N {\displaystyle {\text{partial ...
In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations, which use two operands. [2] An example is any function : , where A is a set; the function is a unary operation on A.
This computer-programming -related article is a stub. You can help Wikipedia by expanding it.