Search results
Results from the WOW.Com Content Network
The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...
It is calculated as the sum of squares of the prediction residuals for those observations. [ 1 ] [ 2 ] [ 3 ] Specifically, the PRESS statistic is an exhaustive form of cross-validation , as it tests all the possible ways that the original data can be divided into a training and a validation set.
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
In ordinary least squares, the definition simplifies to: =, =, where the numerator is the residual sum of squares (RSS). When the fit is just an ordinary mean, then χ ν 2 {\displaystyle \chi _{\nu }^{2}} equals the sample variance , the squared sample standard deviation .
Using matrix notation, the sum of squared residuals is given by S ( β ) = ( y − X β ) T ( y − X β ) . {\displaystyle S(\beta )=(y-X\beta )^{T}(y-X\beta ).} Since this is a quadratic expression, the vector which gives the global minimum may be found via matrix calculus by differentiating with respect to the vector β {\displaystyle \beta ...
Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b' , where b' is the projection of b onto the column space of A .
In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.