enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number, which prefers a single variable for flow analysis rather than the set of variables as listed in the table below. The Manning formula contains a quantity called the hydraulic radius.

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  4. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel ...

  5. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.

  6. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth) [m]; is Manning's coefficient [time/length 1/3]; and; is a constant; k = 1 when using SI units and k = 1.49 when using BG units.

  7. Flow in partially full conduits - Wikipedia

    en.wikipedia.org/wiki/Flow_in_partially_full...

    However, an important assumption is taken that Manning’s Roughness coefficient ‘n’ is independent to the depth of flow while calculating these values. Also, the dimensional curve of Q/Q(full) shows that when the depth is greater than about 0.82D, then there are two possible different depths for the same discharge, one above and below the ...

  8. Minor losses in pipe flow - Wikipedia

    en.wikipedia.org/wiki/Minor_Losses_in_pipe_flow

    Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.

  9. Hydraulic calculation - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_calculation

    The hydraulic calculation procedure is defined in the applicable reference model codes such as that published by the US-based National Fire Protection Association (NFPA), [2] or the EN 12845 standard, Fixed firefighting system – Automatic sprinkler systems – Design, installation and maintenance.